
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

Instructor: Daniel Llamocca

Notes – Unit 1

COMPUTER HARDWARE ORGANIZATION

THE PROCESSOR

Three major components:
 Arithmetic Logic Unit (ALU): Performs arithmetic (e.g., addition, subtraction, division) and bit-wise logic (e.g., AND,

OR) operations.
 Registers: They hold data and memory address values during the execution of an instruction.
 Control Unit: It is in charge of executing instructions. Instructions are read from memory. To execute a particular

instruction, this unit asserts specific signals at certain times to control the registers, ALU, memories and ancillary logic. A
Control Unit is implemented as a large Finite State Machine (FSM) with datapath logic.

EEXXAAMMPPLLEE OOFF AA SSIIMMPPLLEE PPRROOCCEESSSSOORR

 Instruction (or Program) Memory and Data Memory separated (Harvard architecture).
 A handful of registers: A, PC, PTR, MDR, IR
 8-bit processor: Data bus is 8-bits wide
 Data and Instruction memories: Memory contents are 8-bits wide. The size of the memories is 64 KB, this requires 16 bits

to address all bytes. Address bus is then 16-bits wide.
 Program Counter (PC): Keeps track of address of the instruction to be executed next. It points to the Instruction Memory.

It can be i) incremented by 1, ii) incremented by an 8-bit offset, iii) modified to an arbitrary 8-bit or 16-bit address.
 PTR Register (16 bits): Points to data memory.

PROGRAM EXECUTION
 The processor reads instructions from the Instruction Memory (one after the other) and executes them. The instructions

are a string of bytes that specify a particular operation to be carried out. The Control Unit asserts specific signals at the
proper times so as to execute a particular instruction. The results of the operation can be stored in a register, data
memory, and/or and output interface. Some instructions might modify the Program Counter at will.

 At power up, usually the processor reads the instruction from the first memory address. This is done by asserting the
reset input of the Program Counter Register at power up.

Memory

Data /

Instruction

OUTPUT

UNITS

INPUT

UNITS

CONTROL

UNIT
ALU

REGISTERS

PROCESSOR (CPU)

ADDRESS/DATA BUS

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

Instructor: Daniel Llamocca

SIMPLE PROCESSOR - DIAGRAM:

M
D
R

E
P
T
R

E
B

E

A
E

A
L
U

C
O

N
T

R
O

L
 U

N
IT

D
A
T
A

B
U
S

01

I
n
s
t
r
u
c
t
i
o
n

M
e
m
o
r
y

(
6
4
K
x
8
)

D
a
t
a

M
e
m
o
r
y

(
6
4
K
x
8
)

O
E

W
E

O
E

W
E

O
U
T

E

I
N

E

L
E
D
S

PC

E

1
6

+
8

8

01

1
6

1
6

...

S
W
I
T
C
H
E
S

01

A
D
D
R
E
S
S

B
U
S

E

I
R

E

8

8

1
6

1
6

1
6

s
e
l

X
Y

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

Instructor: Daniel Llamocca

ARITHMETIC LOGIC UNIT:

sel Operation Function Unit
000 Z <= X + Y Add X and Y

Arithmetic
001 Z <= X - Y Subtract Y from X

010 Z <= X + 1 Increment X

011 Z <= X - 1 Decrement X

100 Z <= not(X) Complement X

Logic
101 Z <= X and Y Bitwise AND

110 Z <= X or Y Bitwise OR

111 Z <= X xor Y Bitwise XOR

INSTRUCTION SET:
 The format of the instructions is as follows: OPCODE (1 byte) | (optional fields: up to 2 bytes)

 OPCODE: Unique identifier that specifies a particular instruction.

 Other fields: usually they are address and data values
 An instruction may take up to 3 bytes in memory.

Instruction Set: Collection of available instructions.

Assembly Instruction
mnemonic

Machine
code

Meaning

ld addr,#val 75 aa xx Load 8-bit value (val) into memory location at addr.
ld ptr, #data 90 yy yy Load 16-bit value (data) into register ptr.
ld A, @ptr E0 Load contents of memory location pointed to by ptr into A.
and A, #val 54 xx Bit-wise AND: A ← A and val
bnz A, target 70 zz If A≠0, then branch to the address provided by target

If A=0, then go to next instruction
inc addr 05 aa Increments the contents of memory location at addr.
dbnz addr, target D5 aa zz Decrements the contents of memory location at addr and branch if the result

is not zero.

Observations:
 Most of the instructions in the table above only allow 8 bits to specify a memory address.
 PTR is a 16-bit register. To load a 16-bit value on it, we require two read cycles from Instruction Memory. This is taken

care of by an intermediate register that grabs 8 bits at a time.

 bnz, dbnz: A label specifies the instruction to branch to. The assembler determines the address to branch to and

specifies it in the machine code (here we can only branch to the first 256 memory positions as only one byte is available
to specify the address to branch to).
Alternative assembler approach: the assembler determines an offset. This way we can branch (up or down) 256 positions
from the current instruction. This approach requires specification of whether to add or subtract the offset from the PC
value, thereby increasing the machine code and requiring the PC circuitry to allow for addition and subtraction.

sel(0)

+ cin + cin

1

Y

X

sel(1)

sel(2)

0 1

0 1

0 1

sel

8

8

0 1

0 1

8

3

ALU
Z

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

Instructor: Daniel Llamocca

SAMPLE PROGRAM:

Assembly Instruction mnemonic Start Address Machine Code (hex) Comments
 ld 0x20,#0 0x0000 75 20 00
 ld 0x21,#20 0x0003 75 21 14 20 is a decimal value
 ld ptr,#0x2000 0x0006 90 20 00
loop: ld A, @ptr 0x0009 E0 Only 1 byte required
 and A,#0x03 0x000A 54 03
 bnz A, next 0x000C 70 10
 inc 0x20 0x000E 05 20
next: dbnz 0x21, loop 0x0010 D5 21 09

1) ld 0x20,#0: Load 0x00 at address 0x0020. Instruction requires 3 bytes.

The OPCODE (75) is read from Instruction Memory. The next byte (0x20) is

read and placed on PTR (left-appending zeros) via the address bus. The

following byte (0x00) is read and placed on the data bus. Then we write 0x00

in Data Memory at address 0x0020 (alternatively, we can store 0x00 on MDR,

this allows for flexibility to choose when to write on Data Memory).

Start of Instruction: PC: 0x0000 End of Instruction: PC: 0x0003

2) ld 0x21,#20: load 0x14 at address 0x0021. Instruction requires 3 bytes.

We write 0x14 in Data Memory at address 0x0020 (as in instruction 1)

Start of Instruction: PC: 0x0003 End of instruction: PC: 0x0006

3) ld ptr,#0x2000: load 0x2000 on PTR. Instruction requires 3 bytes.

The OPCODE (90) is read from Instruction Memory. The next byte (0x20) is

placed on the least significant byte of PTR. The following byte (0x00) is placed

on the most significant byte of PTR.

Start of Instruction: PC: 0x0006 End of Instruction: PC: 0x0009

4) ld A, @ptr: contents of the memory location pointed to by PTR are loaded

into A. This instruction requires 1 byte.
The OPCODE (E0) is read from Instruction Memory. The data located at the

address pointed to by PTR (0x2000 in this example) is read and placed on the

ALU where we transfer it to register A (this ALU transfer can be done by setting
the register B to 0x00 and performing a bit-wise OR)

Start of Instruction: PC: 0x0009 End of Instruction: PC: 0x000A

5) and A,#0x03: A ← A AND 0x03. This instruction requires 2 bytes.

The OPCODE (54) is read from Instruction Memory. The next byte (0x03) is

placed on register B via the data bus. Then a bitwise AND with A is performed
on the ALU, the result is stored in A.

Start of Instruction: PC: 0x000A End of Instruction: PC: 0x000C

6) bnz A, next: Branch to next (0x0010) if A is nonzero. This instruction requires 2 bytes.

The OPCODE (70) is read from Instruction Memory. The next byte (0x10) is read and placed on IR. To compare A with

zero, A is placed on MDR. If A=0, PC is incremented by 1 (as usual). If A≠0, the value at IR (0x10) is placed on PC.

Start of Instruction: PC: 0x000C

End of Instruction: If we do not branch (A is zero), then PC: 0x000E. If we branch (A is nonzero), then PC: 0x0010

7) inc 0x20: The data located in address 0x0020 is incremented by 1. This instruction requires 2 bytes.

The OPCODE (05) is read from Instruction Memory. The next byte (0x20) is placed on PTR, and we read the data at

0x0020. The data is placed on the ALU, where it is incremented by 1 and placed in A. Then, the contents of A are written

on the Data Memory at memory location specified by PTR (0x0020).

Start of Instruction: PC: 0x000E End of Instruction: PC: 0x0010

8) dbnz 0x21, loop: Decrement the data located in address 0x0021. If the result is nonzero, branch to loop (0x0009)

The OPCODE (D5) is read from Instruction Memory. This instruction requires 3 bytes. The next byte (0x21) is placed on

PTR. The next byte (0x09) is read and placed on IR. Then we read data at 0x0021 (pointed to by PTR). The data is

placed on the ALU, (where it is decremented by 1 and placed in A. A is then placed on MDR to compare A with zero. If it

is zero, we increment PC by 1 (as usual). If A is nonzero, the value on IR (0x09) is placed on PC.

Start of Instruction: PC: 0x0010

End of Instruction: If we do not branch, then PC: 0x0013. If we branch, then PC: 0x0009

75

Address

Instruction 120

00

75

21

14

90

20

00

E0

54

03

70

02

05

20

D5

21

...

0A

8 bits

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B

000C

000D

000E

000F

0010

0011

0012

FFFF

...

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

INSTRUCTION MEMORY

